

[Anbuselvi* *et al.*, 7(2): February, 2018] ICTM Value: 3.00

IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ISSN: 2277-9655

CODEN: IJESS7

Impact Factor: 5.164

INTEGRAL SOLUTIONS OF BINARY QUADRATIC DIOPHANTINE EQUATION

$x^2 - 3xy + y^2 + 12x = 0$

R.Anbuselvi^{1*}, S.Jamuna Rani²

Associate Professor , Department of Mathematics, ADM College for women, Nagapattinam,

Tamilnadu ,India

Asst Professor, Department of Computer Applications, Bharathiyar college of Engineering and Technology, Karaikal, Puducherry, India

DOI: 10.5281/zenodo.1165778

ABSTRACT

The binary quadratic Diophantine equation given by $x^2 - 3xy + y^2 + 12x = 0$ is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

KEYWORDS: Binary Quadratic, integral solutions, polygonal numbers.

I. INTRODUCTION

Binary quadratic Diophantine equations are rich in variety [1-3]. For an extensive review of sizable literature and various problems, one may refer [1-16]. In this communication, we consider yet another interesting ternary quadratic equation $x^2 - 3xy + y^2 + 12x = 0$ and obtain infinitely many non-trivial integral solutions. A few interesting relations between the solutions and special Polygonal numbers are presented.

Notations Used

- $t_{m,n}$ Polygonal number of rank 'n' with size 'm'
- P_n^m Pyramidal number of rank 'n' with size 'm'

II. METHOD OF ANALYSIS

The Diophantine equation representing the binary quadratic equation to be solved for its non zero distinct integral solution is

$$x^2 - 3xy + y^2 + 12x = 0 \tag{1}$$

Note that (1) is satisfied by the following non-zero integer pairs

However, we have other solutions for (1), which are illustrated below

Solving (1) for x, we have

$$x^{2} + (-3y + 12)x + y^{2} = 0$$

$$x = \frac{1}{2}(3y - 12 \pm \sqrt{(-3y + 12)^{2} - 4y^{2}}$$

$$x = \frac{1}{2}(3y - 12 \pm \sqrt{(5y^{2} - 72y + 12^{2})}$$
Let
$$\alpha^{2} = 5y^{2} - 72y + 12^{2}$$
(2)

Which is written as

$$(5y - 36)^2 = 5\alpha^2 + 24^2$$

$$Y^2 = 5\alpha^2 + 24^2$$
(3)
(4)

Where Y = 5y - 36

The least positive integer solution of (3) is

$$\alpha_0 = 12, \quad Y_0 = 36$$

Now to find the other solution of (3), consider the Pellian equation
$$Y^2 = 5\alpha^2 + 1$$
(5)
Whose fundamental solution is $(\widetilde{\alpha_0}, \widetilde{Y_0}) = (4,9)$

[Anbuselvi* et al., 7(2): February, 2018] ICTM Value: 3.00

The general solution of (5) is of the form

And

$$\begin{split} \widetilde{Y}_{s} + \sqrt{D} \widetilde{\alpha_{s}} &= \left(\widetilde{Y}_{0} + \sqrt{D} \ \widetilde{\alpha_{0}}\right)^{s+1} \\ \widetilde{Y}_{s} + \sqrt{5} \widetilde{\alpha_{s}} &= \left(9 + 4\sqrt{5}\right)^{s+1} \\ \widetilde{Y}_{s} - \sqrt{5} \widetilde{\alpha_{s}} &= \left(9 - 4\sqrt{5}\right)^{s+1} \\ (6) \\ (6) + (7) \implies \widetilde{Y}_{s} + \sqrt{5} \ \widetilde{\alpha_{s}} + \widetilde{Y}_{s} - \sqrt{5} \ \widetilde{\alpha_{s}} &= \left(9 + 4\sqrt{5}\right)^{s+1} + \left(9 - 4\sqrt{5}\right)^{s+1} \\ \widetilde{Y}_{s} &= \frac{1}{2} \left[\left(9 + 4\sqrt{5}\right)^{s+1} + \left(9 - 4\sqrt{5}\right)^{s+1} \right] \\ (6) - (7) \implies \widetilde{Y}_{s} + \sqrt{5} \ \widetilde{\alpha_{s}} - \widetilde{Y}_{s} + \sqrt{5} \ \widetilde{\alpha_{s}} &= \left(9 + 4\sqrt{5}\right)^{s+1} - \left(9 - 4\sqrt{5}\right)^{s+1} \\ \widetilde{\alpha_{s}} &= \frac{1}{2\sqrt{5}} \left[\left(9 + 4\sqrt{5}\right)^{s+1} - \left(9 - 4\sqrt{5}\right)^{s+1} \right] \end{split}$$

ISSN: 2277-9655

CODEN: IJESS7

Impact Factor: 5.164

Then

$$\left. \begin{array}{l} \widetilde{Y_s} = \frac{f_s}{2} \\ \widetilde{\alpha_s} = \frac{g_s}{2\sqrt{5}} \end{array} \right\}$$
(8)

Where

$$f_{s} = \left[\left(9 + 4\sqrt{5}\right)^{s+1} + \left(9 - 4\sqrt{5}\right)^{s+1} \right]$$
$$g_{s} = \left[\left(9 + 4\sqrt{5}\right)^{s+1} - \left(9 - 4\sqrt{5}\right)^{s+1} \right]$$
$$s = 0, 2, 4 \dots$$

Applying the lemma of Brahmaguptha between $(\widetilde{\alpha_0}, \widetilde{Y_0})$ & $(\widetilde{\alpha_s}, \widetilde{Y_s})$ The other solutions of (3) can be obtained from the relations

$$\alpha_{s+1} = \alpha_0 \widetilde{Y_s} + Y_0 \widetilde{\alpha_s}$$

$$= 12 \widetilde{Y_s} + 36 \widetilde{\alpha_s}$$

$$= 12 \frac{f_s}{2} + 36 \frac{g_s}{2\sqrt{5}}$$

$$\alpha_{s+1} = 6f_s + \frac{18}{\sqrt{5}} g_s \qquad (9)$$

$$Y_{s+1} = Y_0 \widetilde{Y_s} + D\alpha_0 \widetilde{\alpha_s}$$

= $36 \widetilde{Y_s} + 5 * 12 \widetilde{\alpha_s}$
= $36 \frac{f_s}{2} + 5 * 12 \frac{g_s}{2\sqrt{5}}$

 $Y_{s+1} = 18f_s + 6\sqrt{5} g_s$ (10) Using (4), (6), (7), (9) and (10), the non zero distinct integer solution of the hyperbola (1) are obtained as follows

$$x_{s+1} = \frac{1}{2} (3Y_{s+1} - 12 \pm \alpha_{s+1})$$
(11)
$$y_{s+1} = \frac{1}{5} (Y_{s+1} + 36)$$

The recurrence relations satisfied by x_{s+1}, y_{s+1} are respectively

$$x_{s+1} - 322x_{s+3} + x_{s+5} + 1536 = 0$$

$$y_{s+1} - 322y_{s+3} + y_{s+5} + 2304 = 0$$

For simplicity considering positive sign on the R.H.S of (11) a few numerical examples are given in table

S	x_{s+1}	<i>y</i> _{<i>s</i>+1}
0	300	120
1	95052	36312
2	30604908	116900490

[Anbuselvi* *et al.*, 7(2): February, 2018] ICTM Value: 3.00

Observations

- 1. $x_0 y_0$ is a nasty number
- 2. $x_{s+1} y_{s+1} \equiv x_{s+1} + y_{s+1} \pmod{8}$
- 3. $x_{s+1} = y_{s+1} \pmod{9}$
- 4. Each of the expressions $x_s x_{s+1}$ and $x_{s+1} y_{s+1} + 100$ is a perfect square
- 5. $x_{s+1} y_{s+1} \equiv x_{s+1} \pmod{8}$

III CONCLUSION

In this paper, we have presented four different patterns of non-zero distinct integer solutions of quadratic Diophantine equation $x^2 - 3xy + y^2 + 12x = 0$ and relations between solutions and special numbers are also obtained. To conclude, one may search for other patterns of solutions and their corresponding properties.

IV REFERENCES

Journal Articles

- 1. GopalanMA, Sangeethe G. On the Ternary Cubic Diophantine Equation $y^2 = Dx^2 + z^3$ Archimedes J.Math, 2011,1(1):7-14.
- 2. GopalanMA,VijayashankarA,VidhyalakshmiS.Integral solutions of Ternary cubic Equation, $x^2 + y^2 - xy + 2(x + y + 2) = (k^2 + 3)z^2$, Archimedes J.Math,2011;1(1):59-65.
- 3. GopalanM.A,GeethaD,Lattice points on the Hyperboloid of two sheets $x^2 - 6xy + y^2 + 6x - 2y + 5 = z^2 + 4$ Impact J.Sci.Tech,2010,4,23-32.
- 4. GopalanM.A,VidhyalakshmiS,KavithaA,*Integral points on the Homogenous Cone* $z^2 = 2x^2 7y^2$, The Diophantus J.Math,2012,1(2) 127-136.
- 5. GopalanM.A,VidhyalakshmiS,SumathiG,Lattice points on the Hyperboloid of one sheet $4z^2 = 2x^2 + 3y^2 4$, The Diophantus J.Math,2012,1(2),109-115.
- 6. GopalanM.A, VidhyalakshmiS, LakshmiK, Integral points on the Hyperboloid of two sheets $3y^2 = 7x^2 z^2 + 21$, Diophantus J.Math, 2012, 1(2), 99-107.
- 7. GopalanM.A,VidhyalakshmiS,MallikaS,*Observation on Hyperboloid of one sheet* $x^2 + 2y^2 z^2 = 2$ Bessel J.Math.2012,2(3),221-226.
- 8. GopalanM.A,VidhyalakshmiS,Usha Rani T.R,MallikaS,*Integral points on the Homogenous cone* $6z^2 + 3y^2 - 2x^2 = 0$ Impact J.Sci.Tech,2012,6(1),7-13.
- 9. GopalanM.A,VidhyalakshmiS,LakshmiK,*Lattice points on the Elliptic Paraboloid*, $16y^2 + 9z^2 = 4x^2$ Bessel J.Math,2013,3(2),137-145.
- 10. GopalanM.A,VidhyalakshmiS,KavithaA,*Observation on the Ternary Cubic Equation* $x^2 + y^2 + xy = 12z^3$ Antarctica J.Math,2013;10(5):453-460.
- 11. GopalanM.A,VidhyalakshmiS,Um araniJ,*Integral points on the Homogenous Cone* $x^2 + 4y^2 = 37z^2$, Cayley J.Math,2013,2(2),101-107.
- 12. MeenaK,VidhyalakshmiS,GopalanM.A,PriyaK,*Integral points on the cone* $3(x^2 + y^2) 5xy = 47z^2$, Bulletin of Mathematics and Statistics and Research,2014,2(1),65-70.
- 13. GopalanM.A,VidhyalakshmiS,NivethaS,*on Ternary Quadratic Equation* $4(x^2 + y^2) 7xy = 31z^2$ Diophantus J.Math,2014,3(1),1-7.
- 14. GopalanM.A,VidhyalakshmiS,ShanthiJ,*Lattice* points on the Homogenous Cone $8(x^2 + y^2) 15xy = 56z^2$ Sch Journal of Phy Math Stat,2014,1(1),29-32.
- 15. MeenaK,VidhyalakshmiS, GopalanM.A, Aarthy ThangamS, Integer solutions on the homogeneous cone $4x^2 + 3y^2 = 28z^2$, Bulletin of Mathematics and Statistics and Research,2014,1(2),47-53.
- 16. MeenaK,GopalanM.A,VidhyalakshmiS,ManjulaS,Thiruniraiselvi,N, On the Ternary quadratic Diophantine Equation $8(x^2 + y^2) + 8(x + y) + 4 = 25z^2$,International Journal of Applied Research,2015,1(3),11-14.

[Anbuselvi* et al., 7(2): February, 2018]

ICTM Value: 3.00

ISSN: 2277-9655 Impact Factor: 5.164 CODEN: IJESS7

- 17. Anbuselvi R, Jamuna Rani S, Integral solutions of Ternary Quadratic Diophantine Equation $11x^2 3y^2 = 8z^2$, International journal of Advanced Research in Education & Technology, 2016, 1(3), 26-28.
- 18. Anbuselvi R, Jamuna Rani S, Integral solutions of Ternary Quadratic Diophantine Equation $x^2 + xy + y^2 = 7z^2$, Global Journal for Research Analysis ,March 2016,3(5), 316--319.

Reference Books

- 1. Dickson IE, Theory of Numbers, vol 2. Diophantine analysis, New York, Dover, 2005
- 2. Mordell J. Diophantine Equations Academic Press, NewYork, 1969
- 3. Carmichael RD, The Theory of numbers and Diophantine Analysis, NewYork, Dover, 1959