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ABSTRACT 
The binary quadratic Diophantine equation given by 𝑥2 − 3𝑥𝑦 + 𝑦2 + 12𝑥 = 0 is analyzed for its 

patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and 

special polygonal numbers are exhibited. 
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I. INTRODUCTION 
Binary quadratic Diophantine equations are rich in variety [1-3].For an extensive review of sizable literature and 

various problems, one may refer [1-16]. In this communication, we consider yet another interesting ternary 

quadratic equation  𝑥2 − 3𝑥𝑦 + 𝑦2 + 12𝑥 = 0   and obtain infinitely many non-trivial integral solutions. A few 

interesting relations between the solutions and special Polygonal numbers are presented. 
Notations Used 

 𝑡𝑚,𝑛- Polygonal number of rank ‘n’ with size ‘m’ 

 𝑃𝑛
𝑚- Pyramidal number of rank ‘n’ with size ‘m’ 

  

II. METHOD OF ANALYSIS 
The Diophantine equation representing the binary quadratic equation to be solved for its non zero distinct 

integral solution is  

𝑥2 − 3𝑥𝑦 + 𝑦2 + 12𝑥 = 0                                             (1) 
Note that (1) is satisfied by the following non-zero integer pairs 

                                              (-12,-36),(12,12),(12,24) 

However, we have other solutions for (1), which are illustrated below 

 

 

Solving (1) for x, we have  

𝑥2 + (−3𝑦 + 12)𝑥 + 𝑦2 = 0 

𝑥 =
1

2
(3𝑦 − 12 ± √(−3𝑦 + 12)2 − 4𝑦2 

𝑥 =
1

2
(3𝑦 − 12 ± √(5𝑦2 − 72𝑦 + 122)                     (2) 

Let 

𝛼2 = 5𝑦2 − 72𝑦 + 122 

Which is written as  

(5𝑦 − 36)2 = 5𝛼2 + 242 

𝑌2 = 5𝛼2 + 242                                                                 (3) 

Where   𝑌 = 5𝑦 − 36                                                                                                           (4) 

 

The least positive integer solution of (3) is 

𝛼0 = 12, 𝑌0 = 36 

Now to find the  other solution of (3), consider the Pellian equation 

𝑌2 = 5𝛼2 + 1                                                                    (5) 

Whose fundamental solution is (𝛼0 ,̃  𝑌0̃ ) = (4,9) 
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The general solution of (5) is of the form 

𝑌𝑠̃ + √𝐷𝛼𝑠̃ = (𝑌0̃ + √𝐷 𝛼0̃)
𝑠+1

 

𝑌𝑠̃ + √5𝛼𝑠̃ = (9 + 4√5 )
𝑠+1

                                           (6) 

And                                          𝑌𝑠̃ − √5𝛼𝑠̃ = (9 − 4√5 )
𝑠+1

                                       (7) 

(6) + (7) ⟹    𝑌𝑠̃ + √5 𝛼𝑠̃ + 𝑌𝑠̃ − √5 𝛼𝑠 ̃ = (9 + 4√5 )
𝑠+1

+ (9 − 4√5 )
𝑠+1

  

 𝑌𝑠̃ =
1

2
[(9 + 4√5 )

𝑠+1
+ (9 − 4√5 )

𝑠+1
 ] 

(6) − (7) ⟹    𝑌𝑠̃ + √5 𝛼𝑠̃ − 𝑌𝑠̃ + √5 𝛼𝑠 ̃ = (9 + 4√5 )
𝑠+1

− (9 − 4√5 )
𝑠+1

 

𝛼𝑠̃ =
1

2√5
[(9 + 4√5 )

𝑠+1
− (9 − 4√5 )

𝑠+1
 ] 

Then 

𝑌𝑠  ̃  =
𝑓𝑠

2
   

𝛼𝑠  ̃  =
𝑔𝑠

2√5
  

}                                                                      (8) 

 

Where  

𝑓𝑠 =  [(9 + 4√5 )
𝑠+1

+ (9 − 4√5 )
𝑠+1

 ] 

𝑔𝑠 =  [(9 + 4√5 )
𝑠+1

− (9 − 4√5 )
𝑠+1

 ]  

𝑠 = 0, 2, 4 … ….                 

Applying the lemma of Brahmaguptha between (𝛼0 ,̃  𝑌0̃)    &  (𝛼𝑠 ,̃  𝑌𝑠̃)  

The other solutions of (3) can be obtained from the relations 

𝛼𝑠+1 = 𝛼0𝑌𝑠   ̃ + 𝑌0𝛼𝑠̃ 

           = 12𝑌𝑠̃ +  36 𝛼𝑠̃  

          = 12
𝑓𝑠

2
+  36 

𝑔𝑠

2√5
 

𝛼𝑠+1 = 6𝑓𝑠 +
18

√5
  𝑔𝑠                                                           (9) 

𝑌𝑠+1 = 𝑌0𝑌𝑠   ̃ + 𝐷𝛼0𝛼𝑠̃ 

           = 36𝑌𝑠̃ + 5 ∗ 12 𝛼𝑠̃  

          = 36
𝑓𝑠

2
+  5 ∗ 12 

𝑔𝑠

2√5
 

𝑌𝑠+1 = 18𝑓𝑠 + 6√5 𝑔𝑠                                                           (10) 

Using  (4), (6), (7), (9) 𝑎𝑛𝑑 (10), the non zero distinct integer solution of the hyperbola (1) are obtained as 

follows 

𝑥𝑠+1 =  
1

2
(3𝑌𝑠+1 −  12 ± 𝛼𝑠+1 )                                         (11) 

𝑦𝑠+1 =
1

5
(𝑌𝑠+1 + 36) 

The recurrence relations satisfied by 𝑥𝑠+1, 𝑦𝑠+1  are respectively 

𝑥𝑠+1 −  322𝑥𝑠+3 + 𝑥𝑠+5   + 1536 = 0 

𝑦𝑠+1 −  322𝑦𝑠+3 + 𝑦𝑠+5   + 2304 = 0 
 

For simplicity considering positive sign on the R.H.S of (11) a few numerical examples are given in table 

S 𝒙𝒔+𝟏 𝒚𝒔+𝟏 

0 300 120 

1 95052 36312 

2 30604908 116900490 
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Observations 

1. 𝑥0 − 𝑦0 is a nasty number 

2. 𝑥𝑠+1 − 𝑦𝑠+1 ≡ 𝑥𝑠+1 + 𝑦𝑠+1(𝑚𝑜𝑑 8) 

3. 𝑥𝑠+1 = 𝑦𝑠+1(𝑚𝑜𝑑 9) 

4. Each of the expressions  𝑥𝑠𝑥𝑠+1 and  𝑥𝑠+1𝑦𝑠+1 + 100  is a perfect square 

5. 𝑥𝑠+1 − 𝑦𝑠+1 ≡ 𝑥𝑠+1(𝑚𝑜𝑑 8) 
 

III        CONCLUSION 
In this paper, we have presented four different patterns of non- zero distinct integer solutions of quadratic 

Diophantine equation 𝑥2 − 3𝑥𝑦 + 𝑦2 + 12𝑥 = 0  and relations between solutions and special numbers are 

also obtained. To conclude, one may search for other patterns of solutions and their corresponding 

properties. 

. 
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